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Figure 1: Examples of our 4× and 8× upsampling results. Our model without GAN sets a new state-of-the-art benchmark in terms of PSNR/SSIM; our

GAN-extended model yields high perceptual quality and is able to hallucinate plausible details up to 8× upsampling ratio.

Abstract

Recent deep learning approaches to single image super-

resolution have achieved impressive results in terms of tra-

ditional error measures and perceptual quality. However, in

each case it remains challenging to achieve high quality re-

sults for large upsampling factors. To this end, we propose a

method (ProSR) that is progressive both in architecture and

training: the network upsamples an image in intermediate

steps, while the learning process is organized from easy to

hard, as is done in curriculum learning. To obtain more

photorealistic results, we design a generative adversarial

network (GAN), named ProGanSR, that follows the same

progressive multi-scale design principle. This not only al-

lows to scale well to high upsampling factors (e.g., 8×) but

constitutes a principled multi-scale approach that increases

the reconstruction quality for all upsampling factors simul-

taneously. In particular ProSR ranks 2nd in terms of SSIM

and 4th in terms of PSNR in the NTIRE2018 SISR chal-

lenge [35]. Compared to the top-ranking team, our model

is marginally lower, but runs 5 times faster.

1. Introduction

The widespread availability of high resolution displays

and rapid advancements in deep learning based image pro-

cessing has recently sparked increased interest in super-

resolution. In particular, approaches to single image su-

per resolution (SISR) have achieved impressive results by

learning the mapping from low-resolution (LR) to high-

resolution (HR) images based on data. Typically, the up-

scaling function is a deep neural network (DNN) that is

trained in a fully supervised manner with tuples of LR

patches and corresponding HR targets. DNNs are able to

learn abstract feature representations in the input image that

allow some degree of disambiguation of the fine details in

the HR output.

Most existing SISR networks adopt one of the two fol-

lowing direct approaches. The first upsamples the LR image

with a simple interpolation method (e.g., bicubic) in the be-

ginning and then essentially learns how to deblur [7,20,33].

The second proposes upsampling only at the end of the

processing pipeline, typically using a sub-pixel convolution

layer [30] or transposed convolution layer to recover the HR

result [8, 23, 30, 37]. While the first class of approaches has

a large memory footprint and a high computational cost, as

it operates on upsampled images, the second class is more

prone to checkerboard artifacts [27] due to simple concate-

nation of upsampling layers. Thus it remains challenging to

achieve high quality results for large upsampling factors.

In this paper, we propose a method that is progressive

both in architecture and training. We design the network

to reconstruct a high resolution image in intermediate steps

by progressively performing a 2× upsampling of the input

from the previous level. As building blocks for each level

of the pyramid, we propose dense compression units, which

are adapted from dense blocks [16] to suit super-resolution.
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Figure 2: Asymmetric pyramidal architecture. More DCUs are allocated in the lower pyramid level to improve the reconstruction accuracy and to reduce

memory consumption.

Compared to existing progressive SISR models [21, 22],

we improve the reconstruction accuracy by simplifying the

information propagation within the network; furthermore

we propose to use an asymmetric pyramidal structure with

more layers in the lower levels to enable high upsampling

ratios while remaining efficient. To obtain more photoreal-

istic results, we adopt the GAN framework [14] and design

a discriminator that matches the progressive nature of our

generator network by operating on the residual outputs of

each scale. Such paired progressive design allows us to ob-

tain a multi-scale generator with a unified discriminator in

a single training.

In this framework, we can naturally utilize a form of cur-

riculum learning, which is known to improve training [4]

by organizing the learning process from easy (small upsam-

pling factors) to hard (large upsampling factors). Compared

to common multi-scale training, the proposed training strat-

egy not only improves results for all upsampling factors, but

also significantly shortens the total training time and stabi-

lizes the GAN training.

We evaluate our progressive multi-scale approach

against the state-of-art on a variety of datasets, where we

demonstrate improved performance in terms of traditional

error measures (e.g., PSNR) as well as perceptual quality,

particularly for larger upsampling ratios.

2. Related Work

Single image super-resolution techniques (SISR) have

been an active area of investigation for more than a

decade [12]. The ill-posed nature of this problem has typi-

cally been tackled using statistical techniques: most notably

image priors such as heavy-tailed gradient distributions

[10, 29], gradient profiles [32], multi-scale recurrence [13],

self-examples [11], and total variation [26]. In contrast,

exemplar-based approaches such as nearest-neighbor [12]

and sparse dictionary learning [36, 38, 40] have exploited

the inherent redundancy of large-scale image datasets. Re-

cently, Dong et al. [6] showed the superiority of a simple

three-layer convolutional network (CNN) over sparse cod-

ing techniques. Since then, deep convolutional architectures

have consistently pushed the state-of-art forward.

Direct vs. Progressive Reconstruction. Direct recon-

struction techniques [7, 20, 23, 24, 33, 37] upscale the im-

age to the desired spatial resolution in a single step. Early

approaches [7, 20, 33] upscale the LR image in a pre-

processing step. Thus, the CNN learns to deblur the input

image. However, this requires the network to learn a feature

representation for a high-resolution image which is com-

putationally expensive [30]. To overcome this limitation,

many approaches opt for operating on the low dimensional

features and perform upsampling at the end of the network

via sub-pixel convolution [30] or transposed convolution.

A popular progressive reconstruction approach is de-

scribed by LapSRN by Lai et al. [21]. In their work, the up-

sampling follows the principle of Laplacian pyramids, i.e.

each level learns to predict a residual that should explain the

difference between a simple upscale of the previous level

and the desired result. Since the loss functions are com-

puted at each scale, this provides a form of intermediate su-

pervision. Lai et al. improved their method with deep and

wider recursive architecture and multi-scale training [22].

While [22] improved the accuracy, there remains a consid-

erable gap between the top-performing approach in terms

of PSNR [24]. In particular, as we show in Section 4.2,

the Laplacian pyramidal structure aggravates the optimiza-

tion difficulty. Furthermore, the recursive pyramids result



in quadratic growth of computation in the higher pyramid

level, becoming the bottleneck for reducing runtime and

expanding the network capability. Lastly, in addition to a

progressive generator, we also propose a progressive dis-

criminator along with a progressive training strategy.

Perceptual Loss Functions. The aforementioned tech-

niques optimize the reconstruction error by minimizing the

ℓ1-norm and descendants such as the Charbonnier penalty

function [21]. Although these approaches yield small re-

construction errors, they are unable to hallucinate perceptu-

ally plausible high-frequencies details. To this end, Ledig et

al. [23] proposed a perceptual loss function consisting of a

content loss that captures perceptual similarities and an ad-

versary to steer the reconstruction closer to the latent man-

ifold of natural solutions. Based on this, Sajjadi et al. [28]

apply an additional texture loss to encourage similarity with

the original image. In contrast to these works, we design a

discriminator that operates on the residual outputs of each

scale and train progressively with a strategy based on cur-

riculum learning. With this, our GAN model is able to up-

sample perceptually pleasing SR images for multiple scales

up to 8×.

3. Progressive Multi-scale Super-resolution

Given a set of n LR input images with corresponding HR

target images {(x1,y1), . . . , (xn,yn)}, we consider the

problem of estimating an upscaling function u : X → Y ,

where X and Y denote the space of LR and HR images,

respectively. Finding a suitable parameterisation for the up-

scaling function u for large upsampling ratios, is challeng-

ing: the larger the ratio, the more complex the function class

required.

To this end, we propose a progressive solution to learn

the upscaling function u. In the following, we propose

our pyramidal architecture, ProSR, for multi-scale super-

resolution in Section 3.1 and 3.2. In Section 3.3 we propose

ProGanSR, a progressive multi-scale GAN for perceptual

enhancement. Finally, we discuss a curriculum learning

scheme in Section 3.4.

3.1. Pyramidal Decomposition

We propose a pyramidal decomposition of u into a series

of simpler functions u0, . . . , us. Each function—or level—

is tasked with refining the feature representation and per-

forming a 2× upsampling of its own input. Each level of the

pyramid consists of a cascade of dense compression units

(DCUs) followed by a sub-pixel convolution layer. We as-

sign more DCUs in the lower pyramid levels, resulting in

the asymmetric structure. Having more computation power

in the lower pyramid not only reduces the memory con-

sumption but also increases the receptive field with respect
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r ŝ-1 = Rs-1(xs)  

rs α
Rs(xs)... r ŝxs
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Figure 3: Schematic illustration of the blending procedure in curriculum

training for the generator (top) and the discriminator (bottom). vscale, rs
denote the scale-specific input and reconstruction layer, and us denotes

the pyramid of scale s. α varies from 0 to 1 during blending to control the

impact of the new pyramid.

to the original image, hence it outperforms the symmet-

ric variant in terms of reconstruction quality and runtime.

While the decomposition of u is shared among the pyramid

levels, we also use two scale-specific sub-networks, denoted

by vs and rs, which allow for an individual transformation

between scale-varying image space and a normalized fea-

ture space. A schematic illustration of our progressive up-

sampling architecture is detailed in Figure 2.

To simplify learning, the network is designed to output

the residual

Rs(x) = (rs ◦ us ◦ · · · ◦ u0 ◦ vs)(x) (1)

w.r.t a fixed upsampling of the input ϕs(x) through e.g.

bicubic interpolation. Thus, for a given scaling factor s the

estimated HR image can be computed as

ŷ = Rs(x) + ϕs(x). (2)

Notably, our network doesn’t follow the Laplacian pyra-

mid principle like in [21, 22], i.e. the intermediate sub-net

outputs are neither supervised nor used as base image in the

subsequent level. Such design performs favorably over the

Laplacian alternative, as it simplifies the backward-pass and

thus reduces the optimization difficulty. Additionally we

do not downsample the groundtruth to create labels, which

is done for the intermediate supervision in [21, 22]. This

avoids artefacts that may result from subsampling.

3.2. Dense Compression Units

We base the construction of each pyramid level on the

recently proposed DenseNet architecture [16]. Similarly to



skip connections [15], dense connections improve gradient

flow alleviating vanishing and shattered gradients [3].

The core component in each level of the pyramid is a

dense compression unit (DCU), which consists of a modi-

fied densely connected block followed by 1×1 convolution

CONV(1,1).

The original dense layer is composed of BN-RELU-

CONV(1,1)-BN-RELU-CONV(3,3). Following recent

practice in super-resolution [9, 24, 39], we remove all batch

normalizations. However, since the features from previous

layers may have varying scales, we also remove the first

ReLU to rescale the features with CONV(1-1). This leads to

a modified dense layer composition: CONV(1,1)-RELU-

CONV(3,3).

Contrary to DenseNet, we break the dense connection at

the end of each DCU with a CONV(1,1) compression layer,

which re-assembles information efficiently and leads to a

slight performance gain in spite of the breakage of dense

connection. For a very deep model we apply pyramid-wise

as well as local residual links to improve the gradient prop-

agation as shown in Figure 2.

3.3. Progressive GAN

Generative adversarial networks (GANs) [14] have

emerged as a powerful method to enhance the perceptual

quality of the upsampled images [14, 23, 28] in SISR.

However, training GANs is notoriously difficult and suc-

cess at applying GANs to SISR has been limited to single-

scale upsampling at relatively low target resolutions. In or-

der to enable multi-scale GAN-enhanced SISR, we propose

a modular and progressive discriminator network similar to

the generator network proposed in the previous section. As

illustrated in the bottom of Figure 3, the architecture has

a reverse pyramid structure {u2, u1, u0}, where each level

gradually reduces the spatial dimension of the input image

with AVGPOOLING. Similar to the generator, scale-specific

image transformation layers vscale are implied before each

pyramid. To accommodate the multi-scale outputs from the

generator, the network is fully convolutional and outputs a

small patch of features similar to PatchGAN [18]. The com-

plete specs of the discriminator can be found in the supple-

mental material.

Similar to the generator network, the discriminator op-

erates on the residual between the original and bicubic up-

sampled image. This allows both generator and discrimi-

nator to concentrate only on the important sources of vari-

ation which are not already well captured by the standard

upsampling operation. Since these regions are challenging

to upsample well, they correspond to the largest percep-

tual errors. This can also be viewed as subtracting a data-

dependent baseline from the discriminator which helps to

reduce variance.

As the training objective, we use the more stable least

square loss instead of the original cross-entropy loss [25].

Denoting the predicted residual and real residual as r̂ and r,

the discriminator loss and generator loss for a training ex-

ample of scale s can be expressed as

Li
Ds

=(D (r̂i
s))2 + (D (rsi )− 1)2 (3)

Li
Rs

=(D (r̂i
s)− 1)2+ (4)

∑

k∈{2,4}

‖Φk (ŷi)− Φk (yi)‖
2 ,

where Φk denotes the k-th pooling layer input in

VGG16 [31].

3.4. Curriculum Learning

Curriculum learning [4] is a strategy to improve training

by gradually increasing the difficulty of the learning task. It

is often used in sequence prediction tasks and in sequential

decision making problems where large speedups in training

time and improvements in generalisation performance can

be obtained.

The pyramidal decomposition of u allows us to apply

curriculum learning in a natural way. The loss for a training

example (xs
i ,yi) of scale s can be defined as

Li
Rs

= ‖Rs (x
s
i ) + ϕs (x

s
i )− yi‖1 (5)

where x
s
i corresponds to s× downsampled version of yi.

Then the goal at scale s is to find

θ̂s = argmin
θs

∑

s′≤s

∑

i

Li
R

s′
, (6)

where θs parameterises all functions in and below the cur-

rent scale (u0, v0, r0, . . . , us, vs, rs) according to our pyra-

midal network shown in Figure 2. Our training curriculum

starts by training only the 2× portion of the network. When

we proceed to a new phase in the curriculum (e.g. to 4×),

a new level of the pyramid is gradually blended in to re-

duce its impact on the previously trained layers. As Figure 3

shows, for the generator the predicted residual r̂s at scale s

is a linear combination of the outputs from level s and s−1,

while in analog for the discriminator, the output features

from the new pyramid are combined with the output of the

scale-specific input layer from the previous level vscale−1,

before entering the trained pyramids {us−1, . . . , u0}. Bilin-

ear interpolation and AVGPOOL are used to match the spa-

tial dimensions before merging. In both cases, α controls

the influence of the new pyramid and thus it varies from

0 to 1 during the blending procedure. As a result we incre-

mentally add training pairs of the next scale. While a similar

idea was proposed in [19] to improve high-resolution image

generation, we use this strategy in the context of multi-scale

training. Finally, to assemble the batches, we randomly se-

lect one of the scales s to avoid mixing batch statistics as

suggested in [2].



Compared to simple multi-scale training where training

examples from different scales are simultaneously fed to the

network, such progressive training strategy greatly shortens

the total training time. Furthermore, it yields a further per-

formance gain for all included scales compared to single-

scale and simple multi-scale training and alleviates instabil-

ities in GAN training.

4. Evaluation

Before we compare with popular state-of-the-art ap-

proaches, we first discuss the benefits of each of our pro-

posed components using a small 24-layer model.

All presented models are trained with the DIV2K [34]

training set, which contains 800 high-resolution images.

The training details are listed in the supplemental material.

For evaluation, the benchmark datasets Set5 [5], Set14 [41],

BSD100 [1], Urban100 [17], and the DIV2K validation set

[34] are used. As it is commonly done in SISR, all evalua-

tions are conducted on the luminance channel.

4.1. Ablation study

Ablation Study Method PSNR Parameters runtime

Baseline

Single Dense Block,

Dense Layer BRCBRC,

Single Scale

28.30 8.22M 0.19s

Block Division 4 DCUs 28.32 1.79M 0.11s

Architecture Asymmetric Pyramid 28.41 1.89M 0.11s

Training Curriculum Learning 28.45 1.89M 0.11s

Very Deep Model

Increased network

width and depth

longer training

28.94 13.4M 0.27s

Table 1: Overview of experiments in the ablation study. The introduction

of DCUs, block division, an asymmetric pyramid layout, and curriculum

learning allow to consistently increase reconstruction quality. Reported

PSNR values refer to 4× results of Set14. The runtime is tested for 4×

upscaling of 128× 128 image.

Table 1 summarizes the consistent increase in recon-

struction quality stemming from each proposed component.

As a baseline, we start from a single dense block with two

sub-pixel upsampling layers in the end and a residual con-

nection from the LR input to the final output. In the follow-

ing, we describe the individual steps in more detail.

Dense Compression Units. To demonstrate the benefit of

DCUs described in Section 3.2, we replace the single-block

from the baseline model with multiple DCUs. As Table 1

shows, the number of network parameters can be drastically

reduced without harming the reconstruction accuracy. We

can even observe a slight performance gain as the network

is able to reassemble features more efficiently due to the

injection of compression layers.

Asymmetric Pyramid. In this section we show the ad-

vantage of the proposed asymmetric pyramidal architecture.

We compare the following constellations while keeping the

total number of DCUs constant:

Model Architecture

Direct D −D −D −D − S − S

Asymmetric Pyramid D −D −D − S −D − S

Here, D denotes a dense compression unit with 6 dense

layers and S denotes the sub-pixel upsampler. As Table 1

shows, the asymmetric pyramidal architecture considerably

improves the reconstruction accuracy compared to direct

upsampling. This demonstrates the advantage of utilizing

high-dimensional features directly. Furthermore, by assign-

ing more computation in the lower pyramid, the penalty

in memory and computation consumption compared to di-

rect upsample approach is significantly reduced. As shown

in Table 1, for small model, asymmetric pyramid model

achieves the same runtime as direct upsampling.

Curriculum Learning. We extend the 4-DCU asymmet-

ric pyramid model to 8× upsampling to quantify the ben-

efit of curriculum learning over simultaneous multi-scale

training. As Table 2 shows, simultaneous training typically

has small or even negative impact on the lowest scale (2×),

which is also evident in VDSR [20] (see Table 2). On the

other hand, curriculum learning always improves the recon-

struction quality and outperforms simultaneous training by

an average of 0.04dB.

Furthermore, curriculum learning considerably shortens

the training time. As Figure 4 shows, the network reaches

the same number of epochs and quality faster than simulta-

neous training, since the 2× subnet requires less computa-

tion and hence less time for each update.

4.2. Comparison with other progressive architec­
tures.

In contrast to our approach, existing progressive methods

[21, 22] typically rely on deep supervision. They impose a

loss on all scales which can be denoted as

Li
s =

∑

s′<s

ℓ1

(

ψs′(yi), ŷ
s′

i

)

+ ℓ1 (y
s
i , ŷ

s
i ) , (7)

with ψs′ being a downsampling operation to scale s′.

Futhermore, following the structure of a Laplacian pyramid,

each level is encouraged to learn the difference between a

bicubic upscale of the previous level instead of the upsam-

pled LR image. Thus the residual connections are given by

ŷ
s = r̂

s + ϕ2

(

y
s−1

)

, (8)

where ϕ2 denotes an upscaling operator by a factor of 2.



Improvement

w.r.t single-scale

2×/4×/8× (dB)

Set5 Set14 B100 U100 DIV2K average

simultaneous -0.05/+0.09/-0.01 +0.01/+0.03/+0.05 +0.02/+0.01/+0.03 +0.12/+0.06/+0.08 +0.06/-0.02/+0.05 +0.06/+0.02/+0.05

curriculum +0.05/+0.11/+0.08 +0.08/+0.04/+0.06 +0.07/+0.03/+0.05 +0.21/+0.09/+0.08 +0.13/+0.02/+0.05 +0.13/+0.05/+0.06

Table 2: Gain of simultaneous training and curriculum learning w.r.t. single-scale training on all datasets. The average is computed accounting the number

of images in the datasets. Curriculum learning improves the training for all scales while simultaneous training hampers the training of the lowest scale.
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Figure 4: Training time comparison between curriculum learning and multiscale simultaneous learning. We train the multiscale model and plot the PSNR

evaluation of the individual scales. The elapsed epoch is encoded as the line color. Because curriculum learning activates the smaller subnets first, it requires

much less time to reach the same evaluation quality.

model

B100 Set14

2× 4× 8× 2× 4× 8×

single

scale

ours - 27.44 - - 28.41 -

alt - 27.32 - - 28.20 -

multi

scale

ours 31.95 27.47 24.75 33.24 28.45 24.86

alt 31.92 27.38 24.70 33.22 28.28 24.76

Table 3: Comparison with other progressive approaches.

We also evaluate such alternative progressive architec-

ture but observed large decrease in PSNR as shown in Ta-

ble 3. Therefore, we conclude that it is less stable to use

varying sub-scale upsampling results as base images com-

pared to fixed interpolated results and that using a down-

sampling kernel to create the HR label images could intro-

duce undesired artefacts.

4.3. Comparison with State­of­the­art Approaches

In this section, we provide an extensive quantitative

and qualitative comparison with other state-of-the-art ap-

proaches.

Quantitative Comparison. For a quantitative compari-

son, we benchmark against VDSR [20], DRRN [33], Lap-

SRN [21], MsLapSRN [22], EDSR [24]. We obtained

models from Lai et al. [22] for 8× versions of VDSR and

DRRN, that have been retrained with 8× data. To produce

8× EDSR results, we extend their 4× model by adding an-

other sub-pixel convolution layer. For training, we follow

their practice which means we initialize the weights of the

8× model from the pretrained 4× model.

Due to discrepancy in the model size within existing ap-

proaches, we divide them into two classes based on whether

they have more or less than 5 million parameters. Accord-

ingly, we provide two models with different sizes, denoted

as ProSRs and ProSRℓ, to compete in both classes. ProSRs

has 56 dense layers in total with growth-rate k = 12 and a

total of 3.1M parameters. ProSRℓ has 104 dense layers with

growth-rate k = 40 and 15.5M parameters which is roughly

a third of the parameters of EDSR.

Table 4 summarizes the quantitative comparison with

other state-of-the-art approaches in terms of PSNR. An ex-

tended list that includes SSIM scores can be found in the

supplemental material. As Table 4 shows, ProSRs achieves

the lowest error in most datasets. The very deep model,

ProSRℓ, shows consistent advantage in higher upsampling

ratios and is comparable with EDSR in 2×. In general, our

progressive design allows to raise the margin in PSNR be-

tween our results and the state-of-the art as the upsampling

ratio increases.

Qualitative comparison. First, we qualitatively compare

our method without GAN to other methods that also min-

imise the ℓ1 loss or related norms. Figure 7 show results of
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Figure 5: Comparison of 4× GAN results (best viewed when zoomed in). Our approach is less prone to artefacts and aligns well with the original image.

w/ GAN w/o GAN Input w/ GAN w/o GAN Input

Figure 6: Hallucinated details in 8× upsample result with adversarial loss.

our method and the most recent state-of-the-art approaches

in 4× and 8×.

Concerning our perceptually-driven model with GAN,

we compare with SRGAN [23] and EnhanceNet [28]. As

Figure 5 shows, the hallucinated details align well with fine

structures in the ground truth, even though we do not have

an explicit texture matching loss as EnhanceNet [28]. While

SRGAN and EnhanceNet can only upscale 4×, our method

is able to extend to 8×. Results are shown in Figure 6. We

provide an extended qualitative comparison in the supple-

mental material.

5. Runtime.

The asymmetric pyramid architecture contributes to

faster runtime compared to other approaches that have sim-

ilar reconstruction accuracy. In our test environment with

NVIDIA TITAN XP and cudnn6.0, ProSRℓ takes on av-

erage 0.8s, 2.1s and 4.4s to upsample a 520 × 520 image

by 2×, 4× and 8×. In the NTIRE challenge, we reported

the runtime including geometric ensemble, which requires

8 forward passes for each transformed version of the input

image. Nonetheless, our runtime is still 5 times faster than

the top-ranking team.

6. NTIRE Challenge

The “New Trends in Image Restoration and Enhance-

ment” (NTIRE) 2018 super-resolution challenge [35] aims

at benchmarking SISR methods in challenging scenarios.

In particular, one of the challenge tracks targets 8× up-

scaling, where the low resolution images are generated with

known downsampling kernels (bicubic). We participated in

the challenge with the ProSRℓ network. In addition to the

method described above, we utilised the geometry ensemble

used in [24], which yielded a 0.07dB PSNR gain in the val-

idation set. Our model ranks 2nd in terms of SSIM and 4th

in terms of PSNR. Compared to the top-ranking team, our

model is marginally lower by 0.002 and 0.04dB in SSIM

and PSNR respectively, but runs 5 times as fast in test time.

Other tracks in the challenge target 4× upscaling but

consider unknown degradation. Given that this task is dif-

ferent to the bicubic 8× setting, the participating teams and

the rankings differ. Without specific adaptation for this sce-

nario, we also participated in these tracks for completeness

and ranked in the mid-range (7th/9th/7th). We believe fur-

ther improvement can be achieved with targeted preprocess-

ing and extended training data.

7. Conclusion

In this work we propose a progressive approach to ad-

dress SISR. We leverage asymmetric pyramid design and

Dense Compression Units in the architecture, both of which

lead to improved memory efficiency and reconstruction ac-

curacy. A matching pyramidal discriminator is proposed,

which enables optimizing for perceptual quality simultane-

ously for multiple scale. Furthermore we leverage a form

of curriculum learning which not only increases the perfor-

mance for all scales but also reduces the total training time.

Our models sets a new state-of-the-art benchmark in both

traditional error measures and perceptual quality.



PSNR
2× 4× 8×

S14 B100 U100 DIV2K S14 B100 U100 DIV2K S14 B100 U100 DIV2K

# params < 5M

VDSR 33.05 31.90 30.77 35.26 28.02 27.29 25.18 29.72 24.26 24.49 21.70 26.22

DRRN 33.23 32.05 31.23 35.49 28.21 27.38 25.44 29.95 24.42 24.59 21.88 26.37

LapSRN 33.08 31.80 30.41 35.63 28.19 27.32 25.21 29.88 24.35 24.54 21.81 26.40

MsLapSRN 33.28 32.05 31.15 35.62 28.26 27.43 25.51 30.39 24.57 24.65 22.06 26.52

SRDenseNet - - - - 28.50 27.53 26.05 - - - -

ProSRs (ours) 33.36 32.02 31.42 35.80 28.59 27.58 26.01 30.39 24.93 24.80 22.43 26.88

# params > 5M

EDSR 33.92 32.32 32.93 36.47 28.80 27.71 26.64 30.71 24.96 24.83 22.53 26.96

ProSRl (ours) 34.00 32.34 32.91 36.44 28.94 27.79 26.89 30.81 25.29 24.99 23.04 27.36

Table 4: Comparison with state-of-the-art approaches. For clarity, we highlight the best approach in blue.

8× LR DRRN [33]

24.31 dB/0.6627

MsLapSRN [22]

24.29 dB/0.667

EDSR [24]

24.96 dB/0.699

ProSRℓ (Ours)

25.18 dB/0.708

HR

8× LR DRRN [33]

27.55 dB/0.7663

MsLapSRN [22]

27.62 dB/0.769

EDSR [24]

27.93 dB/0.776

ProSRℓ (Ours)

28.20 dB/0.781

HR

4× LR DRRN [33]

21.50 dB/0.5218

MsLapSRN [22]

21.49 dB/0.524

EDSR [24]

21.79 dB/0.553

ProSRℓ (Ours)

21.86 dB/0.557

HR

4× LR DRRN [33]

22.32 dB/0.6926

MsLapSRN [22]

22.25 dB/0.698

EDSR [24]

22.91 dB/0.719

ProSRℓ (Ours)

22.93 dB/0.715

HR

Figure 7: Visual comparison with other state-of-the-art methods.
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