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The 2018 DAVIS Challenge on
Video Object Segmentation

Sergi Caelles, Alberto Montes, Kevis-Kokitsi Maninis, Yuhua Chen,
Luc Van Gool, Federico Perazzi, and Jordi Pont-Tuset

Abstract—We present the 2018 DAVIS Challenge on Video Object Segmentation, a public competition specifically designed for the
task of video object segmentation. It builds upon the DAVIS 2017 dataset, which was presented in the previous edition of the DAVIS
Challenge [1], and added 100 videos with multiple objects per sequence to the original DAVIS 2016 dataset [2]. Motivated by the
analysis of the results of the 2017 edition [1], the main track of the competition will be the same than in the previous edition
(segmentation given the full mask of the objects in the first frame – semi-supervised scenario). This edition, however, also adds an
interactive segmentation teaser track, where the participants will interact with a web service simulating the input of a human that
provides scribbles to iteratively improve the result.

Index Terms—Video Object Segmentation, DAVIS, Open Challenge, Video Processing
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1 INTRODUCTION

The Densely-Annotated VIdeo Segmentation (DAVIS) ini-
tiative [2] supposed a significant increase in the size and
quality of the benchmarks for video object segmentation at
the time. The availability of such a dataset was key in the
appearance of new techniques in the field [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12] that boosted the performance
of the state of the art. The 2017 DAVIS Challenge on
Video Object Segmentation [1] presented an extension of
the dataset: up to 150 sequences (10474 annotated frames)
from 50 sequences (3455 frames), more than one annotated
object per sequence (384 objects instead of 50), and more
challenging scenarios such as motion, occlusions, etc. This
initiative again supposed a boost in 20% better results in the
state of the art (see the analysis in [1]).

Motivated by the success of the first edition of the
challenge, this paper presents the 2018 DAVIS Challenge on
Video Object Segmentation, whose results will be presented
in a workshop co-located with CVPR 2018, in Salt Lake City,
USA. The main track will be, as in the previous edition, the
semi-supervised segmentation, where the mask of the object
in the first frame is given to the algorithm, and the result is
the segmentation in the rest of the frames. The dataset and
its partitions will also be kept as in the 2017 edition.

Apart from the main track, we introduce a new teaser
track, in which we will explore the evaluation of interactive
video object segmentation algorithms, that is, a scenario
where the user provides a very simple and quick input
to the algorithm, waits for the first result; then provides
another input in order to refine the current result and
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Fig. 1. Different levels of interaction in video object segmentation:
Top left unsupervised, top right semi-supervised; bottom interactive
segmentation with different levels of detail.

iterates until the result is satisfactory. The main motivation
behind this new scenario is twofold. First, the semi- and
unsupervised scenarios represents two extremes of the level
of user interaction with the algorithm: the former needs a
pixel-level accurate segmentation of the first frame (very
time consuming for a human to provide) and the latter does
not take any user input into account. Second, the benchmark
does not take speed into account, that is, how much the user
must wait until the result is obtained after marking the first
segmentation.

The evaluation then measures the evolution of the qual-
ity of the result with respect to wall time, that is, taking
into account how many interactions the user needs, as well
as how much time the algorithm takes to respond to each
iteration, in order to reach a certain result quality. We believe
this scenario is more realistic than the semi- and unsuper-
vised setups, both for the more natural inputs provided, as
well as for the fact that time is taken into account. Figure 1
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illustrates different kinds of input annotations that one can
obtain, given different annotation costs.

Interactive segmentation, however, poses some evalu-
ation challenges. First, the results depend on the set of
interactions provided by a human, so it is not easily scalable
and reproducible; and the interactions depend on the set of
results obtained, so one cannot rely on a set of pre-computed
interactions. To solve this first challenge, we propose an
automatic algorithm that simulates human interaction, pro-
viding a set of inputs to correct a certain result. Second,
in order to keep the test-set annotations of the DAVIS
Challenge private, we present a web service to which a local
process can connect, from which some inputs are received,
and to which the segmentation results are sent. During
a segmentation session the service monitors the evolution
of the quality of the results, as well as the time that the
algorithm took to compute them.

To demonstrate the usefulness of our framework, we
propose some powerful interactive segmentation baselines
and a set of metrics to evaluate the results. We believe
that this framework can further promote research in the
field of video object segmentation and help both research
laboratories and industry discover better algorithms that
can be used in realistic scenarios.

2 SEMI-SUPERVISED VIDEO OBJECT SEGMENTA-
TION

The main track of the 2018 edition of the DAVIS Challenge
will be, as in the 2017 edition, the semi-supervised scenario,
that is, the setup in which the perfect segmentation of the
objects in the first frame is given to the algorithms, and
the segmentation in the rest of the frames is the expected
output. We will also keep the same dataset and splits:
training (60 sequences), validation (30 sequences), test-dev
(30 sequences), and test-challenge (30 sequences). Both the
images and the full annotations are public for the training
and validation sets. For both test sets, only the annotations
in the first frame are publicly available. The evaluation
server for test-dev is always open and accepts unlimited
submissions, whereas the submissions to test-challenge are
limited in number (5) and time (2 weeks).

The detailed evaluation metrics are available in the
2017 edition document [1], and detailed dates and in-
structions can be obtained in the website of the challenge
(http://davischallenge.org/challenge2018/).

3 INTERACTIVE VIDEO OBJECT SEGMENTATION

Motivation: The current DAVIS benchmarks provide
evaluation for the two extreme kinds of labels: pixel-wise
segmented masks, and no labels at all. However, none of
these scenarios are realistic in practice: detailed masks are
tedious to acquire (79 seconds per instance on the coarse
polygon annotations of COCO [13], significantly more for
DAVIS-level quality) and unsupervised methods have no
guiding signal for the user to select the object of interest,
which is especially problematic in the multiple-object case.

In order to overcome these limitations, and make video
object segmentation applicable in practice, we focus on
a middle-ground solution: interactive segmentation using

scribble supervision. In this scenario, the user is given a raw
video in the form of a canvas of images. Their task is to
gradually refine the output of a method, interactively, by
drawing scribbles on the object that needs to be segmented.

Different than the semi-supervised case, the user has
access to the current results of their method, and the goal is
to refine them. Moreover, the labelling is not limited to the
first frame. For example, if a method fails at segmenting a
particular object in frame n, the user can draw an additional
scribble on that frame, and provide it to the method for
additional processing. We show that using such interactive
process builds up to the performance of the fully supervised
case, in a much shorter labelling time.

Evaluation as a Web Service: Having the initial
prediction of a method, humans would evaluate all frames
and provide extra scribbles in the region(s) where the
prediction is poor. However, using humans in the loop is
not feasible for large-scale experiments, so we simulate the
human annotations by a robot. We propose a fully automatic
web service that evaluates segmentation techniques by di-
rectly interacting with the client computer, which allows the
DAVIS organizers to keep the test annotations private.

More specifically, the interactive segmentation pipeline
starts on the client side, by the user, who contacts the server
and requests a video with one or multiple objects, and their
initial scribbles. Since the first scribbles are independent of
any prediction outcome, the server provides real ones taken
from a pool of crowd-sourced initial scribbles. Once these
are received, the user can run their method and return an
initial prediction to the server. The task of the server is then
to evaluate the prediction, and generate additional simu-
lated scribbles. This way, we are able to validate interactive
video object segmentation in large-scale datasets, the only
task of the user being to interface their segmentation method
to communicate with the server.

Crowd-sourced initial scribbles: We conduct a
small-scale crowd-sourcing experiment, in which the an-
notators are first asked to label the objects of DAVIS 2017
with scribbles, on the frame that best represents them. The
collected scribbles can be used as the first interaction in the
segmentation pipeline. Figure 1 (bottom row) shows exam-
ples of these manually drawn scribbles. Users are also asked
to perform some iterations of the interactive video object
segmentation baselines presented below. We also keep track
of the time that people spend to draw the scribbles, for
estimating the labelling cost.

Scribble simulation: After the first scribble has been
drawn, the segmentation algorithm being evaluated obtains
a first set of predictions on the full video.

The server, which has access to the ground-truth masks,
focuses on the frame where the evaluation metric between
the prediction and the ground truth is the worst, and pro-
vides a new scribble in that frame, for the next iteration.

The region for which the next scribble needs to be
generated is defined by simple binary operations, by first
removing small spurious detections and selecting connected
components where the prediction has gone wrong. We de-
fine the generated scribbles as a simplified skeleton of such
regions. The process is repeated for both false positives and
false negatives. Figure 2 illustrates a qualitative example
of a simulated scribble set. One can easily calculate the
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Fig. 2. Simulated scribbles: First the frames are evaluated obtaining true positives (green), false negatives (red) and false positives (blue). Then,
for each class, the skeleton tree is computed from error regions (yellow). The final scribbles are obtained using the largest path in the skeleton tree.

labelling costs of the scribbles by estimating it from the
crowd-sourced ones.

Evaluation metrics: The key aspect we want to eval-
uate in interactive segmentation is the trade off between
interaction time and accuracy of the result. The interaction
time is composed of the time the user needs to provide the
feedback and the time the algorithm takes to respond with
a new segmentation result. The former will be estimated by
the scribbling robot, having as reference the times of the
collected user scribbles, and the latter will be measured by
the evaluation service as the time the client process takes to
submit the new segmentation result.

As accuracy metric we use the J&F , as presented and
motivated in the 2017 DAVIS challenge [1]. Each run of
interaction will therefore be represented by a sequence of
time stamps and accuracy values. To aggregate this se-
quence into a final quality metric to compare the partici-
pants’ performance, we propose two different tracks in the
competition: the quality track, in which we are willing to
wait a reasonable amount of time to obtain an accurate
result; and the speed track, in which we want a result as
soon as possible but we expect a minimum accuracy in each
object.

In the quality track, we set a time budget, for example 5
seconds per frame per object, and we compute the J&F
that a method can reach when spending the whole time
budget. In the fast track, we set a minimum quality, for
instance 60% in J&F , and we want to know how much
time an algorithm needs to achieve at least that quality in
each of the objects. The final summary measure is the sum
of the time spent in each of the objects.

We believe that these two evaluation metrics will encour-
age the video object segmentation community to not only
focus on the accuracy of their methods, but also in their
speed, in order to make methods more usable in realistic
scenarios.

Baseline methods: We define two baseline methods
to show the usefulness of the proposed benchmark and
metrics and to serve to the participants to the challenge as
a reference and guide to develop their own techniques. We
will make the code of these baselines available so that they
can serve as a starting point.

The first baseline is based on the OSVOS [4] technique
for semi-supervised segmentation. OSVOS updates the ap-
pearance model of the target object by fine-tuning a CNN
on the first mask of the object, and processes each frame of
the video independently, making the technique efficient in
terms of speed.

In our scenario, OSVOS is adapted to have cheaper
annotations in the form of scribbles as its input, instead of
the full pixel-wise labelled mask. We create a weaker version
of the ground truth from the scribbles. Specifically, if X is
the scribble, we assign the foreground label to the pixels of
Xfg = X ⊕ B, where B is a structuring element and ⊕
the dilation operator. The pixels of Xnc = X ⊕ C \ Xfg ,
with C ⊇ B, are assigned a no-care label that is excluded
from the loss when fine-tuning, and the rest of the pixels are
treated as background. In their original paper, the authors
validated OSVOS on the DAVIS 2016 dataset of single-object
sequences. Since we work on DAVIS 2017 with multiple
objects, we experiment on a single object per fine-tuning
step. We treat scribbles on the other objects as background,
when available. We refer to the modified version of OSVOS
as Scribble-OSVOS.

Typical video segmentation methods report per-frame
results, dividing the total amount of processing time by the
number of frames. In the interactive case, however, in order
to proceed, we need results for the entire sequence to be
available. A fine-tuning step of OSVOS can vary from 60
seconds to 15 minutes [4], depending on the quality we want
to achieve. We examine the fastest version of the algorithm
(60 seconds), to keep waiting time between the interactions
as low as possible.

We start by manually drawing one scribble per object,
from which an initial prediction is generated, by running
Scribble-OSVOS. Afterwards, given the prediction, we draw
additional foreground and background scribbles in erro-
neous areas, and re-train Scribble-OSVOS. This process is
repeated until we reach a satisfactory result. Note that
current foreground predictions are marked as no-care areas,
in order to avoid training with noisy labels.

The second baseline is specifically designed to avoid the
expensive retraining step every time the user introduces a
new scribble, which adds a significant lag. Even though
OSVOS results in satisfactory qualitative results, the user
has to wait for at least 60 seconds to evaluate the results of
their previous labelling step. When one has to repeat this
process for many sequences, this process becomes tedious
and out of the scope of interactive segmentation.

To improve user experience and reduce the lag intro-
duced between the interactions, the idea is to use a CNN
to obtain a feature vector for each pixel of the video and
to train a linear classifier from the pixels that are anno-
tated using the scribbles. In our baseline, we use Deeplab-
v2 [14] with the ResNet-101 [15] architecture, which has been
trained for semantic segmentation. The output size of the
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CNN for every frame is the size of the input downsampled
by a factor of 8 and each pixel has a 2048-feature vector. We
draw inspiration from [16], which further trains the CNN
embedding by means of pixel-wise metric learning.

We handle the scribbles in the same way than in the
Scribble-OSVOS baseline, with the same pre-processing. Us-
ing these labels and the feature vectors from the annotated
frames, we train a support vector classifier [17] for every
object.

At test time, we also extract the feature vector for every
pixel, without need to recompute it on each interaction. For
every object, we use its classifier to label every pixel as fore-
ground or background. Every time a new scribble is drawn,
we only need to adapt the support vector classifier. Note
that Scribble-OSVOS, in contrast, adapts the features and
the classifier (last layers of the CNN) on each interaction.

Evaluation results: Figure 3 illustrates the compari-
son of manually annotated scribbles to simulated ones, for
both aforementioned baselines.
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Fig. 3. Quality vs. Timing: Evolution of J&F in DAVIS 2017 validation
set as a function of the available time.

Scribble-OSVOS when trained from manual scrib-
bles ( ) builds performance marginally faster than its
simulated counterpart ( ). The support vector classifier
follows the opposite trend ( vs. ). Results indicate
that simulated scribbles allow us to extract similar conclu-
sions as the ones generated by humans, in both baselines,
which we believe justifies the use of our simulated scribble
generator in the interactive video object segmentation chal-
lenge.

Interestingly, performance of OSVOS, with a pixel-wise
annotated label (full supervision) achieves 57% in 1200
seconds, a number that is surpassed by Scribble-OSVOS
in only 200 seconds of wall time. The same happens for
the support vector classifier, where the scribble-supervised
algorithm reaches the performance of the fully supervised
one (39.26% in 110 seconds) in only 13 seconds.

4 CONCLUSIONS

This paper present the 2018 DAVIS Challenge on Video
Object Segmentation. The main track will be the same
format and same dataset as in the previous edition: semi-
supervised segmentation by taking the perfect mask of the
first frame as input.

We also propose a new teaser track: interactive video
segmentation. In order to simulate the user interaction while
keeping the test annotations private, we propose a web ser-
vice to which the participants will connect and from which
they will be able to obtain a sequence of scribbles to which
they will reply by submitting the resulting segmentation. By
measuring the trade off between response speed and quality
of the results we aim to encourage research into the field of
interactive video object segmentation, which we believe is
the cornerstone to making video object segmentation usable
in realistic scenarios.
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