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Figure 1: Two panoramas created with our system. Top - (00:05 in the accompanying video): a cropped frame from a 160
megapixel panoramic video generated from five input videos. The overlay on the right shows the full panorama, with the
respective individual field of views of the input cameras highlighted by colored frames. Bottom - (01:22): a crop from a 20
megapixel panorama created from a highly unstructured array consisting of 14 cameras.

Abstract

We describe an algorithm for generating panoramic video from unstructured camera arrays. Artifact-free

panorama stitching is impeded by parallax between input views. Common strategies such as multi-level blend-

ing or minimum energy seams produce seamless results on quasi-static input. However, on video input these

approaches introduce noticeable visual artifacts due to lack of global temporal and spatial coherence. In this

paper we extend the basic concept of local warping for parallax removal. Firstly, we introduce an error mea-

sure with increased sensitivity to stitching artifacts in regions with pronounced structure. Using this measure, our

method efficiently finds an optimal ordering of pair-wise warps for robust stitching with minimal parallax arti-

facts. Weighted extrapolation of warps in non-overlap regions ensures temporal stability, while at the same time

avoiding visual discontinuities around transitions between views. Remaining global deformation introduced by the

warps is spread over the entire panorama domain using constrained relaxation, while staying as close as possible

to the original input views. In combination, these contributions form the first system for spatiotemporally stable

panoramic video stitching from unstructured camera array input.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms

1. Introduction

The richness and detail of our surrounding visual world is
challenging to capture in a regular photograph or video. The
idea of combining content from multiple cameras into a wide
field of view panorama therefore is essentially as old as pho-

tography and film themselves. Popular contemporary imple-
mentations are, for instance, dome-based projections as in
planetaria or IMAX cinemas. But while tools for creating
panoramic still images are available in most consumer cam-
eras and software nowadays, capturing panoramic video of
comparable quality remains a difficult challenge.
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One source of the problem is the fundamental physical
limitations of the acquisition hardware. Currently, profes-
sional video sensors capture at horizontal resolutions around
4k to 5k, which are insufficient for large scale, wide-angle
capture. Moreover, wide-angle optics unavoidably introduce
image distortions and imperfections such as blur, resulting
in an additional loss of image resolution. Hence, in order to
create panoramic video beyond the resolution of a single de-
vice, one has to combine or “stitch” multiple views from an
array of cameras. Stitching is impaired by parallax between
the input views, which can lead to disturbing artifacts such
as blur, ghosting, or discontinuities. Array miniaturization
or mirrors for minimizing parallax is often not an option,
depending on the type of cameras and lenses or the desired
configuration of the array. For example, the top panorama in
Fig. 1 shows a crop from a 160 megapixel panoramic video
captured with five RED Epic-X cameras, with an interaxial
distance about 30 cm due to the dimensions of the camera
bodies and lenses. The panoramic video on the bottom has
been generated from a rig with 14 cameras, as shown in Fig-
ure 2. Both datasets feature considerable parallax between
the input videos.

Various methods for stitching images have been de-
veloped in the recent years, including multi-level blend-
ing [BA83], content-adaptive seams [EF01] and efficient
interactive tools [STP12]. For video containing significant
scene motion, however, these strategies designed mostly for
still images are not optimal for two reasons. Firstly, pro-
cessing individual frames independently, without any notion
of spatiotemporal coherence, results in noticeable deforma-
tions. Secondly, these previous methods are not straightfor-
ward to extend with standard strategies for enforcing tempo-
ral coherence. Processing multiple frames or even all input
videos at once is computationally infeasible due to the sheer
amount of data, in particular for high resolution input and
large arrays as in Fig. 1. We build on the concept of local
image warping [SS00] and extend it to unstructured arrays
of video cameras.

Contributions. We present an algorithm based on three
key observations. Firstly, for the analysis of parallax errors
we found existing image comparison techniques to be not
sufficiently robust or targeted towards the specific stitching
artifacts we observed. Hence, we introduce a patch-based er-
ror metric defined on image gradients, which we designed to
be especially sensitive to parallax errors in highly structured
image regions, and which ensures visual similarity of con-
tent between the input videos and the output panorama.

Secondly, the ability to compensate parallax errors be-
tween views depends on the spatial configuration of the in-
dividual field of views and the scene content, and the order
that the parallax is compensated between images. We there-
fore propose a method that first analyzes these properties,
and then computes an optimized ordering of pair-wise im-
age warps, which results in improved quality of the paral-

Figure 2: Two of the camera arrays we constructed for cap-
turing the panoramic videos shown in this paper. Left: 14
machine vision cameras. Right: A small rig built using five
GoPro cameras. Note that our panoramas have been captured
without particularly accurate placement of cameras in order
to demonstrate the flexibility of our approach.

lax removal. Our procedure remains efficient even for large
numbers of input cameras, where brute-force approaches for
finding an optimal warp order would be infeasible.

Finally, local image warping accumulates globally, lead-
ing to significant spatial deformations of the panorama.
Since these deformations are dependent on the per-frame
scene content, they change for every output frame and hence
result in noticeable temporal jitter. We resolve these global
deformations and temporal instability by a weighted warp
extrapolation from overlap to non-overlap image regions,
and a final constrained relaxation step of each full panoramic
output frame to a reference projection.

We demonstrate panoramic video results captured with
different types of cameras on arrays with up to 14 cameras,
allowing the generation of panoramic video in the order of
tens to over a hundred megapixels.

2. Related Work

We review the most related works here, and refer to
Szeliski [Sze06] for an extensive survey.

Parallax-free input. One class of methods focuses on
creating a single panoramic image from a set of overlap-
ping images, under the assumption that all images are cap-
tured from the same or similar center of projection and
hence are basically parallax-free. Such a configuration can
be achieved by carefully rotating a camera, e.g. using a tri-
pod [KUDC07]. After estimating the relative camera poses,
a panorama can be generated by projecting all images onto
a common surface. Smaller errors caused, e.g., by imper-
fect alignment of projection centers, objects moving dur-
ing image acquisition, or lens distortion can be removed us-
ing image blending [BA83,LZPW04] content-adaptive seam
computation [EF01], or efficient, user-assisted combinations
thereof [STP12]. Depending on the field of view, a suitable
projection has to be chosen in order to minimize undesirable
distortion, e.g., of straight lines [KLD∗09, HCS13]. While
these methods enable the creation of static panoramas up
to gigapixel resolution [KUDC07], they are not designed to
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produce panoramic video and cannot correct for larger par-
allax errors when camera projection centers do not align.

Handling parallax. When capturing hand-held panora-
mas or using an array of cameras, parallax has to be ac-
counted for. A common strategy, which is also the basis
for our work, is to warp the images in 2D space [SS00,
KSU04, JT08] using image correspondences computed as
depth maps or optical flow fields in the overlapping image
regions. In a general multi-view scenario with more than
two input views, this requires combining all correspondence
fields [EdDM∗08]. We show in Section 3.2 that existing so-
lutions such as averaging of correspondence fields [SS00]
are sensitive to wrong correspondence estimates, which
occur frequently in real-world images. Stereo-based ap-
proaches are inherently sensitive to rolling-shutter artifacts
or unsynchronized images. Lin et al. [LLM∗11] describe a
method based on smoothly varying affine stitching which
is, however, computationally expensive and not straightfor-
ward to extend to high resolution input or video. Zaragoza et
al. [ZCT∗14] extend this approach and combine a series of
local homographies to reduce parallax while preserving the
projectivity of the transformation. For specific scenes and
camera motion such as long panoramas of buildings along a
street [AAC∗06,KCSC10], parallax errors can be reduced by
using approximate geometric proxies and seam-based stitch-
ing. Stereo panorama techniques [PRRAZ00] intentionally
capture parallax to enable stereoscopic viewing, but require
a dense sampling and significant overlap of views. Recently,
multi-perspective scene collages [NZN07, ZMP07] showed
interesting artistic results by aligning and pasting images on
top of each other. Both works propose strategies to find op-
timal orderings for combining images, but their respective
solutions are computationally too expensive for processing
video and not designed towards seamless parallax removal of
dynamic content. Inspired by recent advances in video stabi-
lization [LYTS13], a recent state-of-the-art method utilizes
seam-based homography optimization for parallax tolerant
stitching [ZL14], which we compare to in our results.

Dynamic panoramas. Several methods have been devel-
oped that augment static panoramas with dynamic video
elements, e.g., by segmenting dynamic scene parts cap-
tured at different times and overlaying them on a static
panorama [IAB∗96]. Dynamic video textures [AZP∗05] are
infinitely looping video panoramas that show periodic mo-
tions (e.g. fire). Dynamosaics [RPLP05] are made by scan-
ning a dynamic scene with a moving video camera, creating
a panorama where all events play simultaneously. Similarly,
Pirk et al. [PCD∗12] enhance a static gigapixel panorama
by locally embedding video clips. All above methods work
well for localized, periodic motion, but have not been de-
signed to handle significant motion resulting from a camera
array moving through a scene.

Panoramic video. Our aim is to generate fully dynamic
panoramic video. One possibility would be to perform 3D

reconstruction, e.g., using structure-from-motion and multi-
view stereo techniques over the whole input sequence, and
then project the reconstructed 3D models to a single virtual
camera. However, robustly and efficiently creating photo-
realistic, temporally stable geometry reconstructions for en-
tire videos remains a difficult challenge. In particular for
non-static scenes with independently moving objects, the
typically limited amount of overlap between cameras hin-
ders robust multi-view stereo of the complete panorama. One
of the few works that explicitly addresses panoramic video
is [ZC12]. Similar to [KSU04] they compute depth only in
the overlapping regions and then smoothly extrapolate de-
formation to non-overlapping regions [JT08]. This method
works well for simple motions without too strong occlu-
sions, but heavily relies on accurate segmentation of moving
objects. Practical issues such as rolling shutter or unsynchro-
nized cameras pose additional challenges for stereo-based
methods, which our method can handle to a certain extend
due to a general motion field estimation.

Commercial solutions like the Point Grey Ladybug
(www.ptgrey.com), the FlyCam (www.fxpal.com), or the
Panacast camera (www.altiasystems.com) are based on pre-
calibrated, miniaturized camera arrays in order to minimize
parallax. The resolution, optical quality, and flexibility of
such systems is limited in comparison to larger, high qual-
ity cameras and lenses. Similar issues arise for systems like
GoPano (www.gopano.com), FullView (www.fullview.com),
or the OmniCam [SFW∗13], which rely on catadioptric mir-
rors [Nay97] to eliminate parallax.

Assessing panorama quality. In order to analyze align-
ment quality, a standard choice is to measure patch similar-
ity using, e.g., the sum of squared differences (SSD) of pix-
els in overlapping image regions. This is, however, overly
sensitive to intensity differences in less structured image re-
gions, which can be easily fixed after alignment using multi-
level blending. More robust measures were proposed for
hole filling in videos [WSI07] in order to find similar patches
that minimize the SSD of color and gradients. One prob-
lem of comparing pixel values in a patch is that it does not
consider structural image properties. To alleviate this issue,
Kopf et al. [KKDK12] restrict the search space for patches to
texture-wise similar patches only, which also improves effi-
ciency. In the context of hole filling, Simakov et al. [SCSI08]
achieve semantically meaningful results by enforcing that
the filled region is close to known content. Our analysis of
parallax error builds on these ideas.

3. Our Algorithm

A common first step for combining views from multiple
cameras is to estimate their mutual poses, i.e., to find a ba-
sic static image alignment on a user-defined projection sur-
face (such as a hemisphere). In the following we refer to
this step as the reference projection, and we assume the con-
figuration of cameras to be static over the input sequence.
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Figure 3: Example of a reference projection generated from
14 unstructured input views. The colored frames represent
the field of views of the individual input cameras. The re-
maining locally varying parallax manifests as ghosting when
averaging the images, as shown in the close-ups. We encour-
age the reader to zoom in, e.g., on the street and sidewalk,
and to see the supplemental material and video (01:05).

Our method only assumes a simple feature-based alignment
using pairwise homographies directly on the input footage,
which makes it more flexible and straightforward to initial-
ize than techniques requiring special calibration objects like
checkerboards. We provide some helpful practical hints on
required preprocessing like lens undistortion, exposure com-
pensation, and how to generate such a reference projection in
Section 4.2. For the remainder of this section we assume the
reference projection to be given. See Fig. 3 for an example.

Our method builds on the concepts for parallax compensa-
tion introduced by Shum and Szeliski [SS00]. The basic idea
is to estimate a dense correspondence field between overlap-
ping image regions, based on which the regions then can be
warped to achieve per-pixel alignment. More formally, let
Ii and I j be two partially overlapping input images that are
projected to the subsets Ωi and Ω j of the output projection
surface, respectively. A pairwise alignment of these two im-
ages can be achieved by computing dense motion vector field
ui j in the overlap region Ωi j =Ωi ∩Ω j using an optical flow
method like [BBPW04]. This motion field defines a map-
ping from pixel xi in image Ii to its corresponding pixel x j in
I j via x j = xi + ui j(xi). Thus we can align the image I j to Ii

using a backward warping operation and obtain the aligned
image I j→i(xi)= I j(x j).

When generalizing the pairwise case to N input views,
each pixel overlapping with M<N other images has M mo-
tion vectors assigned to it. The task is now to combine all the
resulting motion fields or warps into a single consistent out-
put image. Previously proposed strategies such as exhaus-
tively computing all pairwise motion fields and combining
them by averaging [SS00] are, unfortunately, impractical for
two reasons. Firstly, motion vectors estimated on real-world
data generally contain a significant amount of errors, leading
to noticeable artifacts such as ghosting and image deforma-
tions as shown in Figure 4. Secondly, for a video with K

frames such a procedure has a complexity O(N2K). Since
motion field estimation is the computational bottleneck, any
method based on exhaustive computation quickly becomes

infeasible in practice: in our first experiments on input such
as the one in Figure 1 we observed computation times in the
order of days.

The challenge therefore is to understand which images we
should actually warp and combine in order to efficiently cre-
ate a high quality panorama with minimized parallax errors.

3.1. Parallax Error Analysis

For assessing parallax error, we design an error function
Φ(Ii j) that reflects the quality of the image Ii j resulting from
warping I j onto Ii using the motion field ui j, and combining
both images. A first straightforward idea to define Φ would
be the residual warping error of the motion field, i.e. the sum
of color differences between corresponding pixels in I j and
Ii. This, however, only considers the per-pixel matching be-
tween the two images and does not capture structural devi-
ations of the warped result Ii j from the (unwarped) input Ii

and I j, which are the most noticeable and objectionable arti-
facts (see Figure 5). Assessing the similarity between Ii j and
the input Ii and I j by directly using common measures like
sum-of-squared-differences is also not feasible, as this does
not consider the parallax between the input images and thus
will detect errors even when the final warp quality is good.

Our error measure to detect structural deviations is in-
spired by patch-based methods [WSI07, KKDK12]. We
compare warped output patches to their corresponding
patches in the input images, considering the parallax be-
tween the views, without directly depending on the (po-
tentially wrong) per-pixel motion field. To better reflect
structural deviations of warped patches from corresponding
patches in the unwarped reference projection, we define our
patches on gradient images to ignore low frequency differ-
ences (e.g. illumination changes) which can be fixed later
during blending (Section 3.4). Here we describe the pair-
wise case, which, however, can be easily generalized to an
arbitrary number of images.

In the following let G be the gradient image of I, which
we compute using the Sobel operator. The computation of
our error measure proceeds by visiting each pixel in Gi j, se-
lecting a patch pi j ⊂ Gi j around the pixel, and determining
a patch pi ⊂ Gi or p j ⊂ G j in the gradient images of the ref-
erence projections that best explains pi j. For assessing how
well the patch p j explains pi j , we need to compensate for the
warp between G j and Gi j , without directly relying on the
potentially wrong per-pixel motion field. Exhaustive patch
search is not an option since the search space of possible
transformations would be too large and could be compro-
mised by false positive matches. Instead, we found that by
computing a low-order approximation of the local motion
field ui j within pi j , we get a reliable estimate of the mapping
between pi j and p j, which is not deteriorated by outliers in
the motion field. We implement this idea by fitting a homog-
raphy H to the motion field ui j [HZ06], which essentially
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(a) (b) (c) (d)

Figure 4: Impact of different warp ordering strategies on data from our array with 14 cameras - further demonstrated in the
accompanying video at (00:31). The bottom row shows the output of our error measure. Darker pixels correspond to higher
structural error. The respective close-ups focus on two different types of artifacts, deformation (left) and discontinuities (right),
caused by wrong correspondence fields. (a) Static alignment with multi-band blending works for well aligned regions, but
creates discontinuities in all areas with parallax. (b) Averaging of all correspondence fields (e.g., as in [SS00]) is computationally
expensive and is sensitive to incorrect optical flow estimates, which can lead to deformations as well as incomplete alignment.
(c) Pairwise warping is computationally efficient, but without the optimal ordering accumulates errors such as deformations,
which cannot be corrected. (d) An optimal pairwise ordering computed using our patch-based metric reduces structural errors.

moves the patch to its corresponding location in G j. Using
this homography we compute the distance d j between pi j

and its corresponding patch p j = H ◦ pi j in G j as

d j =
∥∥Gi j[pi j]−G j[H ◦ pi j]

∥∥2
, (1)

where G[p] is the vector obtained by stacking all pixels of G

in a patch p. For computing the distance di to a patch pi in
the unwarped image Gi, the homography H is the identity.
In the following we denote the index of this respective best
patch with a ’∗’, i.e., the best patch p∗ has the minimum
patch distance d∗=min{di,d j}.

We found that we can drastically increase robustness by
considering all patches containing a pixel for computing its
respective error instead of using the patch distances directly.
In this way we measure the error that a particular pixel in-
troduces into the panorama and ignore the error that other
pixels in its vicinity create. Hence we accumulate the error
in each pixel as the sum of errors from all patches containing
this pixel. Let the per-pixel difference in patch p∗ be

δp∗(x) = |Gi j(x)−G∗(H x)|2 , (2)

with H as defined above. The combined error with contribu-
tions from all patches containing that pixel is computed as

φ(x) = ∑
p∗∋x

δp∗(x) , (3)

where p∗∋x denotes the set of all patches p∗ that contain x.
The final error measure Φ of the combined image Ii j is given
as the average error over all pixels in the gradient image

Φ(Ii j) = ∑
x∈Gi j

φ(x) . (4)

Note that in practice we compute and store the per-pixel
error from Eq. (2) for all pixels inside a patch rather than just
for center pixel x, so that Eq. (3) can be efficiently evaluated.
We generally computed the error measure using a patch size
of 252 pixels. See Figure 5 for error visualizations.

3.2. Warp Order Estimation

We can now use the error measure Φ to compute which input
images to combine in what order to achieve a high quality
output panorama. As illustrated in Figure 4, a sub-optimally
chosen combination of images can lead to unrecoverable er-
rors. In order to keep the computational complexity low and
to quickly converge towards a complete, low error panorama,
we propose a strategy based on finding an optimal sequence
of pairwise warps, illustrated in Figure 6. An optimal pair-
wise ordering is computed once on one or more representa-
tive frames, and the same ordering is then used for stitching
all frames of the input video. Note that only the ordering is
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Input

Per-pixel SSD

Our Patch-based error

Figure 5: Comparison of a per-pixel SSD error to our patch-
based approach. Note how the per-pixel SSD identifies large
errors in regions with no visible warping (left), while under-
detecting areas with significant distortion (right).

re-used. Motion fields are computed for each output frame
individually to ensure optimal parallax removal.

The basic idea of our algorithm is to iteratively find sets

of pairs of input views, which can be independently warped
with minimum parallax error. Each pair results in a spatially
separate panoramic fragment. We iterate this process until
only a single fragment remains. See Figure 6 for illustration.

More formally, the problem can be formulated as an it-
erative maximum weighted graph matching [Gal83]. To this
end we represent the images of our panorama as nodes V of
a graph G=(V,E), where undirected edges ei j ∈E connect
overlapping images Ii and I j. Each edge has an associated
positive weight wi j representing the quality of merging im-
ages Ii and I j. Beside the the quality of the minimum error
alignment, we also take the mutual overlap (given by the size
of |Ωi j|) into account:

wi j = 1− γ ·
min

{
Φ(Ii j),Φ(I ji)

}

|Ωi j|α
(5)

where Ii j is the fragment resulting from combining Ii and
I j→i, and γ is a normalization factor such that edge weights
are scaled to [0,1]. We set α = 0.5 in order to achieve a sub-
linear influence of the overlap area, since for large overlaps
a good matching quality should not be overruled by lower
quality matches that simply share a larger overlap. In order
to avoid matching images with insufficient overlap, we re-
move edges if the corresponding images have less than 10%
overlap. On the resulting graph, our algorithm computes the
maximum weighted matching [Gal83], which, in the first it-
eration, results in pairs of input views that can be warped to-
gether independently with low error (Iteration 1 in Figure 6).
Given a computed matching, i.e., one or more pairs of nodes

Figure 6: Illustration of the selection strategy for computing
an optimal warping sequence on the example from Figure 3.
Starting with the input views (first column), an iteration be-
gins with computing all pairwise motion fields and evaluat-
ing overlap and matching quality according to Eq. (5). The
algorithm then picks a maximal set of pairs of images which
produce the smallest alignment error, and warps them into
panoramic fragments (second column). This process of es-
timating motion fields, evaluating matching quality, and se-
lecting maximum sets of pairs is iterated until only one frag-
ment remains. The found ordering is then used for comput-
ing all frames of the panoramic output video.

(vi,v j)∈V 2, we remove for each pair the respective original
nodes in G and create a new node vi j corresponding to the
fragment Ii j that has been created from the warp between
images Ii and I j which had the lower error; see Eq. (5). The
weights of the updated graph are then recomputed based on
the remaining, unprocessed images and the newly generated
fragments, and the procedure is iterated until only one node
remains. The ordering of pairwise warps resulting from this
procedure ensures that only images with a minimal mutual
parallax error are warped and combined.

Once an ordering is found, the pairwise pyramidal warp-
ing strategy illustrated in Figure 6 reduces the complexity
in terms of motion field estimations per panorama output
frame from O(N2) to O(N), which renders the computation
tractable even for a large number of input views as in Fig-
ure 3. A comparison of a warped result with and without our
optimized ordering is shown in Fig. 4.

3.3. Globally Coherent Warping

The warp ordering computed in the previous section tells us
in what order to warp the images of every input frame in
order to robustly handle parallax. However, for spatiotem-
porally stable results, two important issues have to be con-
sidered.

Firstly, warps computed only on the overlap region Ωi j

between two images lead to visible discontinuities [JT08].
Secondly, computing and applying warps on a per-frame ba-
sis is inherently temporally incoherent. With changing scene
content, the motion fields change and so does the applied
image deformation. These deformations accumulate over the
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Figure 7: Importance of parallax extrapolation. (a) Two
views aligned in the reference projection. (b) The interior
of the white border visualizes the flow field (color encodes
angle, saturation amplitude) computed on the overlap re-
gion for warping the bottom left image in (a) onto the top
right image. Outside the white border the flow field has been
smoothly extrapolated. (c) The warped result using only the
interior of the overlap region. Note the tearing artifacts. (d)
The warped result using the extrapolated flow in (b).

pairwise warping steps and differ between each video frame,
and hence change the global shape of the output panorama
over time with respect to the reference projection.

We propose a solution to these issues based on two com-
ponents. A weighted warp extrapolation smoothly extrapo-
lates the motion field ui j into the non-overlap region of I j

during each pairwise warping step (see Figure 7) while re-
maining close to the reference projection. At the end of the
warping procedure, a global relaxation step, which is con-
strained by the reference projection, further ensures tempo-
ral stability of the panorama shape.

Weighted warp extrapolation. We formulate the extrap-
olation as an energy minimization problem of the form

E(ũi j) =
∫

Ω j

|∇ũi j|
2 dx , (6)

where Ω j = Ω j\Ωi j denotes the non-overlapping image re-
gion of I j for which the extrapolated motion field ũi j is to
be computed. In order to minimize Eq. (6), we solve the
corresponding Euler-Lagrange equation ∆ ũi j = 0, which is
known as the Poisson equation. For the solution we assume
Dirichlet boundary conditions ũi j = ui j along the boundary
∂Ωi j of the overlap region Ωi j .

To smoothly attenuate the effects of the extrapolation we
augment Eq. (6) with another set of Dirichlet boundary con-
ditions ũi j = 0 along the level set Lc( f ) = c. The function
f (x) measures the minimum distance of a pixel x from any
point in Ωi j [FH12]. In our experiments we set c ≈ 10% of
the resolution of the output panorama. After discretization of
the equation, the resulting linear system can be solved by any
standard solver, e.g., conjugate gradient. The attenuation en-
sures that pixels sufficiently far away from the overlap region
remain close to their position in the reference projection.

This weighted extrapolation is performed whenever we
compute a warp from one image to another, including the
computation of the warp ordering in Section 3.2.

Final global relaxation. This step accounts for remaining
warp deformation and brings each computed output frame

as close as possible back to the reference projection. We
achieve this by a weighted global relaxation, in which non-
overlap regions act as stronger positional constraints towards
the reference projection (as their pixels are influenced less
during the pairwise warping), while overlap regions are al-
lowed to move more freely.

From the warping phase we know for each pixel of our
current output panorama from which pixel(s) in the input im-
ages it originated. We can therefore define a mapping func-
tion v that maps a pixel back to its position in the refer-
ence projection. In the case where multiple input pixels con-
tributed to a final output pixel, i.e., for pixels in overlapping
image regions that are affected by parallax, we let v map the
output pixel to the average position of its contributing pixels.
We then compute the relaxed map vs as the minimizer of the
energy

E(vs) =
∫

Ω
w(x) |vs − v|2 + |∇vs|

2 dx , (7)

where Ω denotes the panorama domain. The first term tries
to move each pixel back to its origin by penalizing devi-
ations from the reference projection. The adaptive weights
w(x) : Ω→ [0,1] are computed as a simple smooth function
as in Eq. (6), which assigns a value of 1 to outer panorama
boundaries and a value of 0 to overlap regions.

For minimizing the energy in Eq. (7) we solve the cor-
responding Euler-Lagrange equation wvs − λ∆vs = wv. We
augment the equation with Neumann boundary conditions
and solve it in the same way as the parallax extrapolation.

The contribution of our weighted extrapolation and
global relaxation towards temporal stability of the output
panoramic video are best perceived in the accompanying
video (00:59 - 02:08).

3.4. Final Panorama Generation

In order to avoid multiple resampling of images, we concate-
nate the motion fields computed throughout our algorithm
wherever possible, such that the input images have to be
warped only once in order to be parallax corrected. Also we
compute all above warping steps on each image separately,
without performing any actual compositing of individual im-
ages yet. Only after computing the final warped projections
of each input view, we blend and composite the images using
the method described in [BA83] to create a seamless result.

Note that for very high resolution input the motion field
computation can become a bottleneck. However, we found
that computing the optical flow on 2k resolution and upsam-
pling to the full image resolution produces satisfying results
while being orders of magnitude faster. We provide a more
detailed discussion of the computational performance of our
method in the next section.
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Figure 8: A frame (03:16) from a 60 megapixel panorama with a modified configuration of the RED camera array (field of
views of the individual cameras are highlighted). From left to right, the close-ups show comparisons to the following methods:
(a) image averaging to illustrate parallax, (b) seam optimization via graph cuts [RWSG13], (c) Autopano Video (commercial
software for panoramic video generation, www.kolor.com), and (d) our result. Seam-based approaches generally try to “hide”
parallax artifacts by cutting through well aligned image regions, rather than actively removing parallax between views. While
such strategies work well on still images and specific types of video, for cluttered and highly dynamic scenes such unnoticeable
seams often do not exist, so that warping becomes essential. A further problem of per-frame seam computation is temporal
stability in video. In our result virtually all parallax has been removed.

4. Experiments and Results

In this section we first describe our capture setups and pro-
vide some practical tips related to preprocessing panoramic
video. We then discuss a number of results created with our
method. Panoramic video results and high resolution frames
are provided in the accompanying video and supplemental
material. Input data and results are publicly available on our
project webpage for facilitating future research in this area.

4.1. Capture Setups

We used three different camera arrays, each with varying
configurations. See Figure 2 for two exemplary implemen-
tations.

The most portable rig was built from 5 GoPro Hero3 cam-
eras, each operating at 1920 × 1080 resolution with a hor-
izontal view of about 94 degrees. This rig is compact and
can be easily operated by a single person. Despite its small
size, this rig still enabled us to produce panoramic video at
resolutions of up to 3000×1500. We also built a rig con-
sisting of 14 Lumenera LT425 machine vision cameras with
Kowa 12.5mm C mount lenses, each recording at a resolu-
tion of 2048 × 2048 and a field of view of approximately
180×140 degrees. We show sample panoramas from both of
these setups in Figure 10. Finally, the highest quality footage
has been captured with a large custom rig consisting of five
movie-grade cameras (RED Epic-X) with Nikkor 14 mm
lenses, each capturing at a resolution of 5120×2700 pixels.
The corresponding videos have been captured with the rig
mounted on a helicopter and to the back of a car. We show
results with resolutions up to 15339×10665, with an approx-
imate field of view of 160×140 degrees (Figures 1,8 and 13).

4.2. Preprocessing

Due to details of the various camera hardware and APIs,
it can be a difficult task to perfectly synchronize all cam-
eras using hardware triggers alone. We therefore precompute

temporal offsets for each video using the method of Wang
et al. [WSZ∗14]. Before feeding the captured data into our
parallax correction pipeline, we apply the following com-
mon preprocessing steps, which are readily available in ex-
isting toolkits for static panorama generation such as Hugin
(hugin.sourceforge.net).

Compensating lens distortion. For lenses with strong ra-
dial distortion it is advisable to undistort the images first
in order to achieve a rectilinear projection. Nominal lens
parameters for many models can be found in the LensFun
database (lensfun.berlios.de).

Generation of the reference projection. In principle, the
basic static alignment for generating the reference projection
can be achieved in a variety of ways, ranging from man-
ual alignment to feature-based methods and full 3D calibra-
tion, e.g., using calibration targets. Since our method does
not require pre-calibration, we use a simple feature-based
approach that estimates pairwise homographies between the
images as initial alignment [HZ06]. The aligned images are
then individually projected onto a common projection sur-
face, corresponding to the desired projection model for the
panorama, e.g., rectilinear, cylindrical, fisheye, etc. For our
particular examples we generally used a fisheye projection
as commonly required for spherical dome projections.

Exposure compensation. For handling strong exposure
differences between the cameras, we perform a radiometric
alignment between the input cameras [d’A07]. This helps
to improve the parallax compensation as the motion estima-
tion using optical flow can be sensitive to strong brightness
or color differences between images. Remaining differences
are handled by the final blending step (Section 3.4).

4.3. Results and Discussion

Figures 1, 8, and 13 show panoramic video results cap-
tured with two different configurations of the RED camera
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[Mic14] [ZL14] Per-frame warp order Our strategy

Figure 9: Frame-differences between sequential frames visualize the temporal warping artifacts of different approaches. Dark
regions of static content correspond to temporal instability, especially visible around the border. Images have been enhanced for
visibility. Please see the accompanying video (02:10) for more comparisons.

rig. In Figure 8, we show comparisons of our results to a
standard static alignment, a seam-based method using graph
cuts [RWSG13], and a commercial video stitching software.
Figure 9 visualizes temporal stability between existing ap-
proaches and our proposed method. In Figure 12 we com-
pare various different warp ordering strategies to our pro-
posed strategy on input from the 14 camera array. The figure
also empirically demonstrates that the choice of the frame
to compute the ordering is not critical and that any choice
of frame that is representative for the sequence provides a
good solution. The reason for this is twofold: (1) the amount
of overlap influencing motion estimation is fixed through-
out the sequence and (2) the scene content viewed from each
camera remains similar, e.g., downward facing cameras al-
ways point the ground, while upward facing typically see the
sky, building tops and trees. In Figure 13 the close-ups show
scene detail in overlap regions where our algorithm removed
parallax between the views.

Figure 10 shows results captured with our 14 camera ar-
ray, and additional results are provided in the video. Com-
pared to the street example, e.g., shown in Figure 1, we re-
duced the mutual overlap between the field of views of the
individual cameras in order to increase the overall field of
view of the array. These datasets posed several consider-
able challenges. In particular dynamic scene elements such
as objects passing directly in front of the array combined
with camera ego-motion creates significant parallax differ-
ences between views. Despite these challenges our method
was able to produce acceptable results for the majority of the
video. We refer to the video for further validation.

A major challenge of the GoPro array (see Figure 10) was
that rolling shutter effects create significant artifacts in each
video. The situation is further complicated by the random
orientation of the cameras (Figure 2), such that the indi-
vidual scanning directions and, hence, rolling shutter arti-
facts, created inconsistent distortions, causing some degree
of “bouncing” in the resulting video. The GoPro footage
therefore represented a significant challenge, but the result-
ing panoramic output video still looks acceptable. In the
video we compare our result to a state-of-the-art commercial
software package, which clearly struggles with the above
mentioned difficulties. The pairwise optimal selection and
global relaxation can also handle closed cyclic view config-
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Figure 12: Error produced by different pairwise warp order-
ing strategies for the street sequence with 14 input views.
Red: a random warp ordering fixed over the entire sequence
produces high parallax error. Yellow: a warp ordering which
only maximizes pairwise overlap between images does not
account for parallax errors. Blue: optimal per-frame warp
ordering, computed at each frame independently, generates
a low error but causes temporal instability, see Figure 9.
Green: our strategy is to compute an optimal warp ordering
on a single reference frame, and then apply the same order to
the whole frame sequence. The green plot shows the average
error and standard deviation of our strategy over all possible
reference frames. The results demonstrate that the choice of
the reference frame to compute the ordering is not critical
and parallax removal is consistent over the entire sequence.
Magenta: in comparison, warp ordering based on SSD er-
ror (see Figure 5) produces inferior results.

urations without modification. We show a corresponding re-
sult in Figure 11. We encourage the reader to refer to the ac-
companying video (02:10) for additional comparisons with
existing state-of-the-art methods and commercial softwares
such as [Mic14] and Autopano Video.

Timing. In Table 1 we report detailed running times for
each intermediate step of our algorithm at different (hori-
zontal) pixel resolutions. All timings have been measured
on a single core Intel Xeon 2.20 GHz processor. As the
smooth relaxation and extrapolation can be computed at a
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Final Panorama
Initial Parallax Multiband Blending Ours

Final Panorama
Initial Parallax Multiband Blending Ours

Figure 10: Results generated with our 14 camera array - top, (00:31) - and using 5 (randomly assembled) GoPro cameras -
bottom, (01:30) - shown in Figure 2. Inset are a close up of the reference panorama showing the initial parallax, the result after
standard multiband blending, and the result after applying our method. Note the ghosting, duplication, and discontinuities in
high frequency image content which are removed in our result. Please see the video for full results.

Figure 11: Our method also handles closed 360 degree configurations, here we used 5 GoPros. Left: the reference projection
with averaged images to demonstrate ghosting, in particular around the rail, buildings, and the clouds. Right: our stitched result.
Please zoom in for details and refer to the accompanying video (03:06).

Panorama Resolution 512 1024 2048 4096

Reference Projection 0.18 0.3 0.96 1.95
Pairwise Parallax 0.834 3.143 7.641 54.03
Extrapolation 0.401 2.206 8.546 85.62
Relaxation 1.094 4.705 9.23 78.28
Blending 0.598 1.956 7.102 29.59

Table 1: Running time in seconds for the steps required for
a panoramic frame at different horizontal resolutions.

low resolution, the overall bottleneck is the motion estima-
tion for which we use the well established method of Brox
et al. [BBPW04]. As mentioned in Section 3.4, we compute
motion fields on maximally 2k resolution where the flow
estimation per pair of input images takes about 7 seconds,

stressing the importance of reducing the necessary amount
of pairwise motion field computations (Section 3.2). The
overall time to compute one panoramic video frame for the
14 camera input was 57.2 seconds and 512.4 seconds for
the very high resolution results from the RED camera array.
Warp ordering estimation, which is only computed once per
panorama, took 793.1 seconds for the 14 camera array and
128.3 seconds for the RED array, using 32 cores in parallel.
Most of the computation time was spent evaluating the error
measure which takes around 24.3 seconds on an overlapping
region of size 2562. The performance could be easily im-
proved by computing the patch-error in a pyramidal fashion
using smaller patch sizes instead of our single resolution im-
plementation with patches of 252.
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Figure 13: Additional result computed at 40 megapixel resolution, showing the full field of view of all five cameras as well as
close-ups into different overlap regions, where our algorithm removed parallax between the images (03:45).

It’s important to note that our method can be trivially par-
allelized, as each frame of the output panorama is computed
independently from all other frames. We believe that this is a
key property in order to be able to create high resolution out-
put, as processing an entire video volume rather than individ-
ual frames becomes intractable with such large amounts of
image-data. In the future we would like to investigate faster
motion field estimators and more efficient implementations
of our patch-based method. For this work we focused on the
quality of the output videos rather than optimize for speed.

Limitations and Future Work. Our method is currently
limited by the properties of the basic motion estimation and
warping. We build on and extend a well established con-
cept, namely parallax removal by image warping [SS00],
which we found to provide higher quality and temporally
more stable results on video than existing alternatives such
as seam-optimization. However, optic flow methods such
as [BBPW04] have not been optimized for motion estima-
tion in situations with large displacements between images,
lack of texture, rolling shutter effects, and motion blur. In
some frames of our accompanying video, artifacts caused
by these issues become visible, e.g., one of the buildings in
the center of the street panorama (01:24) breaks apart due to
large misalignment and small overlap between input views.
Furthermore our algorithm is susceptible to the quality of
the reference projections. In this work we address only the
correction of parallax effects and not the creation of tempo-
rally stable reference projections. Therefore effects such as
jittering and wobbling observed in the input videos are pre-
served by our algorithm. An example can be observed in the
top region of the GoPro street sequence Figure 10, bottom -
(01:30). Hence, we believe that research on the basic view
synthesis aspects of our approach and the removal of tem-
poral artifacts present in the input images is a very promis-
ing direction for future research. Our input data and results
will be made publicly available to facilitate future research
in these directions.

5. Conclusions

We presented an algorithm and processing pipeline for cre-
ating panoramic video from camera arrays, which focuses
on the particular challenges arising for high resolution video
input: spatiotemporally coherent output and globally mini-
mized distortion despite considerable scene motion and par-
allax. We demonstrated that, using our algorithm, it is possi-
ble to create panoramic videos even from larger arrays with
challenging unstructured camera configurations and practi-
cal issues such as lack of perfect temporal synchronization
or rolling shutter. To the best of our knowledge, these issues
have not been explored in previous work.

We believe that algorithms for jointly processing video
from multiple cameras for applications such as panorama
stitching will become more important in the coming years, as
it is much easier in practice to combine cameras into arrays
than to increase the resolution and quality of a single camera.
Assembling a set of portable GoPro cameras into an array
is nowadays easily possible also for non-professional users,
and camera arrays are currently being integrated even into
mobile phones (www.pelicanimaging.com). Our aim with
this work was to provide a step towards the direction of ubiq-
uitous panoramic video capture, similar to how panoramic
image capture has become part of every consumer camera.

Our input data and results are publicly available on our
project webpage.
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