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Abstract
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Figure: Visual comparison uniqueness (b), spatial distribution
(c), and the combined saliency map (d). It is apparent that the
uniqueness measure prefers rare colors, whereas the
distribution measure favors compact objects.

Saliency Estimation has become a valuable tool
in image processing. In this paper we reconsider
some of the design choices of previous methods and
propose a conceptually clear and intuitive algorithm
for contrast-based saliency estimation. Our method is
based on the observation that an image can be de-
composed into basic, structurally representative ele-
ments that abstract away unnecessary detail, and at
the same time allow for a very clear and intuitive def-
inition of contrast-based saliency. Our first main con-
tribution therefore is a concept and algorithm to de-
compose an image into perceptually homogeneous
elements and to derive a saliency estimate from two
well-defined contrast measures based on the unique-
ness and spatial distribution of those elements. We
show that the complete contrast and saliency estima-
tion can be formulated in a unified way using high-
dimensional Gaussian filters. This contributes to the
conceptual simplicity of our method and lends itself to
an efficient implementation with linear complexity.

Algorithm Overview

(a) Source (b) Abstraction (c) Uniqueness (d) Distribution (e) Saliency

IAbstraction: Decomposes an image into compact, perceptually homogeneous elements repre-
sented by their mean color. Elements preserve relevant structure and abstract away undesirable detail.

IUniqueness: Regions, which stand out from other regions in certain aspects, catch our attention
and hence should be labeled more salient. Thus we measure the uniqueness/rarity Ui of each element:
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IDistribution: Ideally colors belonging to the background will be distributed over the entire image
exhibiting a high spatial variance, whereas foreground objects are generally more compact. Thus we
measure the spatial distribution Di of each element:
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ISaliency Map: Linear combination of the saliency Sj of its surrounding image elements. Sj is the
combination of uniqueness and distribution. By choosing a Gaussian weight, we ensure the up-sampling
process is both local and color sensitive.
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I Implementation: Thanks to our formulation of the above contrast measures as high-dimensional
Gaussian filters, they can all be evaluated highly efficiently in the same filtering framework, using a
permutohedral lattice embedding.

Results and Evaluation

Figure: Visual comparison of previous approaches to our method (SF) and ground truth (GT). As also shown in the numerical
evaluation, SF consistently produces saliency maps closest to ground truth
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Figure: Left: Precision and recall rates for different state-of-the-art algorithms. Right: Mean absolute error of the different
saliency methods to ground truth. In all experiments, our approach consistently produces results closest to ground truth


